Crosstalk of VEGF and Notch pathways in tumour angiogenesis: therapeutic implications.
نویسندگان
چکیده
Angiogenesis is regulated by a number of angiogenic factors through many signalling pathways. The VEGF pathway and Notch signalling are perhaps two of the most important mechanisms in regulation of embryonic vascular development and tumour angiogenesis. Blockade of the VEGF pathway effectively inhibits tumour angiogenesis and growth in preclinical models. The successes in phase III trials have added anti-VEGF agents to standard cancer therapy in several major cancers. A recent flurry of findings indicate that DLL4/Notch signalling decreases angiogenesis by suppressing endothelial tip cell formation; importantly, blockade of DLL4/Notch signalling strikingly increases non-productive angiogenesis but significantly reduces the growth of VEGF-sensitive and VEGF-resistant tumours. The VEGF pathway interplays at several levels with DLL4/Notch signalling in vasculature. VEGF induces DLL4/Notch signalling while DLL4/Notch signalling modulates the VEGF pathway. DLL4 and VEGF emerge to be the yin and yang of angiogenesis. Combination therapy by blocking DLL4/Notch and VEGF pathways synergistically inhibits tumour growth in preclinical models. Thus, targeting the DLL4/Notch pathway, though still at an early stage, may lead to exciting new therapies for clinical application.
منابع مشابه
Angiogenesis in cancer - general pathways and their therapeutic implications.
A vast amount of data shows that angiogenesis has a pivotal role in tumor growth, progression, invasiveness and metastasis. This is a complex process involving essential signaling pathways such as vascular endothelial growth factor (VEGF) and Notch in vasculature, as well as additional players such as bone marrow-derived endothelial progenitor cells. Primary tumor cells, stromal cells and cance...
متن کاملClassical VEGF, Notch and Ang signalling in cancer angiogenesis, alternative approaches and future directions
Angiogenesis is the formation of new vessels starting from pre-existing vasculature. Tumour environment is characterized by 'aberrant angiogenesis', whose main features are tortuous and permeable blood vessels, heterogeneous both in their structure and in efficiency of perfusion and very different from normal vessels. Therapeutic strategies targeting the three pathways chiefly involved in tumou...
متن کاملNotch, IL-1 and Leptin Crosstalk Outcome (NILCO) Is Critical for Leptin-Induced Proliferation, Migration and VEGF/VEGFR-2 Expression in Breast Cancer
High levels of pro-angiogenic factors, leptin, IL-1, Notch and VEGF (ligands and receptors), are found in breast cancer, which is commonly correlated with metastasis and lower survival of patients. We have previously reported that leptin induces the growth of breast cancer and the expression of VEGF/VEGFR-2 and IL-1 system. We hypothesized that Notch, IL-1 and leptin crosstalk outcome (NILCO) p...
متن کاملAngiogenic and cell survival functions of vascular endothelial growth factor (VEGF).
Vascular endothelial growth factor (VEGF) was originally identified as an endothelial cell specific growth factor stimulating angiogenesis and vascular permeability. Some family members, VEGF C and D, are specifically involved in lymphangiogenesis. It now appears that VEGF also has autocrine functions acting as a survival factor for tumour cells protecting them from stresses such as hypoxia, ch...
متن کاملDll4-Notch signaling as a therapeutic target in tumor angiogenesis
Tumor angiogenesis is an important target for cancer therapy, with most current therapies designed to block the VEGF signaling pathway. However, clinical resistance to anti-VEGF therapy highlights the need for targeting additional tumor angiogenesis signaling pathways. The endothelial Notch ligand Dll4 (delta-like 4) has recently emerged as a critical regulator of tumor angiogenesis and thus as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in bioscience
دوره 14 شماره
صفحات -
تاریخ انتشار 2009